Copied to
clipboard

G = C2×C23.18D14order 448 = 26·7

Direct product of C2 and C23.18D14

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C23.18D14, C24.58D14, (C2×D4).228D14, (C23×Dic7)⋊8C2, (C22×D4).10D7, (C2×C14).291C24, (C2×C28).642C23, Dic7⋊C472C22, (C22×C4).269D14, (C22×C14).121D4, C14.139(C22×D4), C23.67(C7⋊D4), C23.D757C22, (D4×C14).311C22, C145(C22.D4), (C23×C14).73C22, C23.133(C22×D7), C22.305(C23×D7), C22.77(D42D7), (C22×C28).437C22, (C22×C14).227C23, (C2×Dic7).281C23, (C22×Dic7)⋊48C22, (D4×C2×C14).21C2, (C2×C14).73(C2×D4), C76(C2×C22.D4), (C2×Dic7⋊C4)⋊47C2, C14.103(C2×C4○D4), C2.67(C2×D42D7), (C2×C23.D7)⋊24C2, C2.12(C22×C7⋊D4), (C2×C4).236(C22×D7), C22.108(C2×C7⋊D4), (C2×C14).175(C4○D4), SmallGroup(448,1249)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C2×C23.18D14
C1C7C14C2×C14C2×Dic7C22×Dic7C23×Dic7 — C2×C23.18D14
C7C2×C14 — C2×C23.18D14
C1C23C22×D4

Generators and relations for C2×C23.18D14
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e14=1, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=fbf-1=bd=db, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce-1 >

Subgroups: 1172 in 342 conjugacy classes, 127 normal (19 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, C14, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, Dic7, C28, C2×C14, C2×C14, C2×C14, C2×C22⋊C4, C2×C4⋊C4, C22.D4, C23×C4, C22×D4, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C7×D4, C22×C14, C22×C14, C22×C14, C2×C22.D4, Dic7⋊C4, C23.D7, C22×Dic7, C22×Dic7, C22×C28, D4×C14, D4×C14, C23×C14, C2×Dic7⋊C4, C23.18D14, C2×C23.D7, C2×C23.D7, C23×Dic7, D4×C2×C14, C2×C23.18D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C22.D4, C22×D4, C2×C4○D4, C7⋊D4, C22×D7, C2×C22.D4, D42D7, C2×C7⋊D4, C23×D7, C23.18D14, C2×D42D7, C22×C7⋊D4, C2×C23.18D14

Smallest permutation representation of C2×C23.18D14
On 224 points
Generators in S224
(1 153)(2 154)(3 141)(4 142)(5 143)(6 144)(7 145)(8 146)(9 147)(10 148)(11 149)(12 150)(13 151)(14 152)(15 81)(16 82)(17 83)(18 84)(19 71)(20 72)(21 73)(22 74)(23 75)(24 76)(25 77)(26 78)(27 79)(28 80)(29 201)(30 202)(31 203)(32 204)(33 205)(34 206)(35 207)(36 208)(37 209)(38 210)(39 197)(40 198)(41 199)(42 200)(43 86)(44 87)(45 88)(46 89)(47 90)(48 91)(49 92)(50 93)(51 94)(52 95)(53 96)(54 97)(55 98)(56 85)(57 172)(58 173)(59 174)(60 175)(61 176)(62 177)(63 178)(64 179)(65 180)(66 181)(67 182)(68 169)(69 170)(70 171)(99 162)(100 163)(101 164)(102 165)(103 166)(104 167)(105 168)(106 155)(107 156)(108 157)(109 158)(110 159)(111 160)(112 161)(113 136)(114 137)(115 138)(116 139)(117 140)(118 127)(119 128)(120 129)(121 130)(122 131)(123 132)(124 133)(125 134)(126 135)(183 212)(184 213)(185 214)(186 215)(187 216)(188 217)(189 218)(190 219)(191 220)(192 221)(193 222)(194 223)(195 224)(196 211)
(1 25)(2 198)(3 27)(4 200)(5 15)(6 202)(7 17)(8 204)(9 19)(10 206)(11 21)(12 208)(13 23)(14 210)(16 183)(18 185)(20 187)(22 189)(24 191)(26 193)(28 195)(29 211)(30 144)(31 213)(32 146)(33 215)(34 148)(35 217)(36 150)(37 219)(38 152)(39 221)(40 154)(41 223)(42 142)(43 159)(44 131)(45 161)(46 133)(47 163)(48 135)(49 165)(50 137)(51 167)(52 139)(53 155)(54 127)(55 157)(56 129)(57 113)(58 103)(59 115)(60 105)(61 117)(62 107)(63 119)(64 109)(65 121)(66 111)(67 123)(68 99)(69 125)(70 101)(71 147)(72 216)(73 149)(74 218)(75 151)(76 220)(77 153)(78 222)(79 141)(80 224)(81 143)(82 212)(83 145)(84 214)(85 120)(86 110)(87 122)(88 112)(89 124)(90 100)(91 126)(92 102)(93 114)(94 104)(95 116)(96 106)(97 118)(98 108)(128 178)(130 180)(132 182)(134 170)(136 172)(138 174)(140 176)(156 177)(158 179)(160 181)(162 169)(164 171)(166 173)(168 175)(184 203)(186 205)(188 207)(190 209)(192 197)(194 199)(196 201)
(1 77)(2 78)(3 79)(4 80)(5 81)(6 82)(7 83)(8 84)(9 71)(10 72)(11 73)(12 74)(13 75)(14 76)(15 143)(16 144)(17 145)(18 146)(19 147)(20 148)(21 149)(22 150)(23 151)(24 152)(25 153)(26 154)(27 141)(28 142)(29 196)(30 183)(31 184)(32 185)(33 186)(34 187)(35 188)(36 189)(37 190)(38 191)(39 192)(40 193)(41 194)(42 195)(43 121)(44 122)(45 123)(46 124)(47 125)(48 126)(49 113)(50 114)(51 115)(52 116)(53 117)(54 118)(55 119)(56 120)(57 165)(58 166)(59 167)(60 168)(61 155)(62 156)(63 157)(64 158)(65 159)(66 160)(67 161)(68 162)(69 163)(70 164)(85 129)(86 130)(87 131)(88 132)(89 133)(90 134)(91 135)(92 136)(93 137)(94 138)(95 139)(96 140)(97 127)(98 128)(99 169)(100 170)(101 171)(102 172)(103 173)(104 174)(105 175)(106 176)(107 177)(108 178)(109 179)(110 180)(111 181)(112 182)(197 221)(198 222)(199 223)(200 224)(201 211)(202 212)(203 213)(204 214)(205 215)(206 216)(207 217)(208 218)(209 219)(210 220)
(1 192)(2 193)(3 194)(4 195)(5 196)(6 183)(7 184)(8 185)(9 186)(10 187)(11 188)(12 189)(13 190)(14 191)(15 201)(16 202)(17 203)(18 204)(19 205)(20 206)(21 207)(22 208)(23 209)(24 210)(25 197)(26 198)(27 199)(28 200)(29 81)(30 82)(31 83)(32 84)(33 71)(34 72)(35 73)(36 74)(37 75)(38 76)(39 77)(40 78)(41 79)(42 80)(43 180)(44 181)(45 182)(46 169)(47 170)(48 171)(49 172)(50 173)(51 174)(52 175)(53 176)(54 177)(55 178)(56 179)(57 92)(58 93)(59 94)(60 95)(61 96)(62 97)(63 98)(64 85)(65 86)(66 87)(67 88)(68 89)(69 90)(70 91)(99 124)(100 125)(101 126)(102 113)(103 114)(104 115)(105 116)(106 117)(107 118)(108 119)(109 120)(110 121)(111 122)(112 123)(127 156)(128 157)(129 158)(130 159)(131 160)(132 161)(133 162)(134 163)(135 164)(136 165)(137 166)(138 167)(139 168)(140 155)(141 223)(142 224)(143 211)(144 212)(145 213)(146 214)(147 215)(148 216)(149 217)(150 218)(151 219)(152 220)(153 221)(154 222)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 47 39 100)(2 124 40 169)(3 45 41 112)(4 122 42 181)(5 43 29 110)(6 120 30 179)(7 55 31 108)(8 118 32 177)(9 53 33 106)(10 116 34 175)(11 51 35 104)(12 114 36 173)(13 49 37 102)(14 126 38 171)(15 130 211 65)(16 85 212 158)(17 128 213 63)(18 97 214 156)(19 140 215 61)(20 95 216 168)(21 138 217 59)(22 93 218 166)(23 136 219 57)(24 91 220 164)(25 134 221 69)(26 89 222 162)(27 132 223 67)(28 87 224 160)(44 195 111 80)(46 193 99 78)(48 191 101 76)(50 189 103 74)(52 187 105 72)(54 185 107 84)(56 183 109 82)(58 150 137 208)(60 148 139 206)(62 146 127 204)(64 144 129 202)(66 142 131 200)(68 154 133 198)(70 152 135 210)(71 117 186 176)(73 115 188 174)(75 113 190 172)(77 125 192 170)(79 123 194 182)(81 121 196 180)(83 119 184 178)(86 201 159 143)(88 199 161 141)(90 197 163 153)(92 209 165 151)(94 207 167 149)(96 205 155 147)(98 203 157 145)

G:=sub<Sym(224)| (1,153)(2,154)(3,141)(4,142)(5,143)(6,144)(7,145)(8,146)(9,147)(10,148)(11,149)(12,150)(13,151)(14,152)(15,81)(16,82)(17,83)(18,84)(19,71)(20,72)(21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,79)(28,80)(29,201)(30,202)(31,203)(32,204)(33,205)(34,206)(35,207)(36,208)(37,209)(38,210)(39,197)(40,198)(41,199)(42,200)(43,86)(44,87)(45,88)(46,89)(47,90)(48,91)(49,92)(50,93)(51,94)(52,95)(53,96)(54,97)(55,98)(56,85)(57,172)(58,173)(59,174)(60,175)(61,176)(62,177)(63,178)(64,179)(65,180)(66,181)(67,182)(68,169)(69,170)(70,171)(99,162)(100,163)(101,164)(102,165)(103,166)(104,167)(105,168)(106,155)(107,156)(108,157)(109,158)(110,159)(111,160)(112,161)(113,136)(114,137)(115,138)(116,139)(117,140)(118,127)(119,128)(120,129)(121,130)(122,131)(123,132)(124,133)(125,134)(126,135)(183,212)(184,213)(185,214)(186,215)(187,216)(188,217)(189,218)(190,219)(191,220)(192,221)(193,222)(194,223)(195,224)(196,211), (1,25)(2,198)(3,27)(4,200)(5,15)(6,202)(7,17)(8,204)(9,19)(10,206)(11,21)(12,208)(13,23)(14,210)(16,183)(18,185)(20,187)(22,189)(24,191)(26,193)(28,195)(29,211)(30,144)(31,213)(32,146)(33,215)(34,148)(35,217)(36,150)(37,219)(38,152)(39,221)(40,154)(41,223)(42,142)(43,159)(44,131)(45,161)(46,133)(47,163)(48,135)(49,165)(50,137)(51,167)(52,139)(53,155)(54,127)(55,157)(56,129)(57,113)(58,103)(59,115)(60,105)(61,117)(62,107)(63,119)(64,109)(65,121)(66,111)(67,123)(68,99)(69,125)(70,101)(71,147)(72,216)(73,149)(74,218)(75,151)(76,220)(77,153)(78,222)(79,141)(80,224)(81,143)(82,212)(83,145)(84,214)(85,120)(86,110)(87,122)(88,112)(89,124)(90,100)(91,126)(92,102)(93,114)(94,104)(95,116)(96,106)(97,118)(98,108)(128,178)(130,180)(132,182)(134,170)(136,172)(138,174)(140,176)(156,177)(158,179)(160,181)(162,169)(164,171)(166,173)(168,175)(184,203)(186,205)(188,207)(190,209)(192,197)(194,199)(196,201), (1,77)(2,78)(3,79)(4,80)(5,81)(6,82)(7,83)(8,84)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,143)(16,144)(17,145)(18,146)(19,147)(20,148)(21,149)(22,150)(23,151)(24,152)(25,153)(26,154)(27,141)(28,142)(29,196)(30,183)(31,184)(32,185)(33,186)(34,187)(35,188)(36,189)(37,190)(38,191)(39,192)(40,193)(41,194)(42,195)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,113)(50,114)(51,115)(52,116)(53,117)(54,118)(55,119)(56,120)(57,165)(58,166)(59,167)(60,168)(61,155)(62,156)(63,157)(64,158)(65,159)(66,160)(67,161)(68,162)(69,163)(70,164)(85,129)(86,130)(87,131)(88,132)(89,133)(90,134)(91,135)(92,136)(93,137)(94,138)(95,139)(96,140)(97,127)(98,128)(99,169)(100,170)(101,171)(102,172)(103,173)(104,174)(105,175)(106,176)(107,177)(108,178)(109,179)(110,180)(111,181)(112,182)(197,221)(198,222)(199,223)(200,224)(201,211)(202,212)(203,213)(204,214)(205,215)(206,216)(207,217)(208,218)(209,219)(210,220), (1,192)(2,193)(3,194)(4,195)(5,196)(6,183)(7,184)(8,185)(9,186)(10,187)(11,188)(12,189)(13,190)(14,191)(15,201)(16,202)(17,203)(18,204)(19,205)(20,206)(21,207)(22,208)(23,209)(24,210)(25,197)(26,198)(27,199)(28,200)(29,81)(30,82)(31,83)(32,84)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(41,79)(42,80)(43,180)(44,181)(45,182)(46,169)(47,170)(48,171)(49,172)(50,173)(51,174)(52,175)(53,176)(54,177)(55,178)(56,179)(57,92)(58,93)(59,94)(60,95)(61,96)(62,97)(63,98)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(99,124)(100,125)(101,126)(102,113)(103,114)(104,115)(105,116)(106,117)(107,118)(108,119)(109,120)(110,121)(111,122)(112,123)(127,156)(128,157)(129,158)(130,159)(131,160)(132,161)(133,162)(134,163)(135,164)(136,165)(137,166)(138,167)(139,168)(140,155)(141,223)(142,224)(143,211)(144,212)(145,213)(146,214)(147,215)(148,216)(149,217)(150,218)(151,219)(152,220)(153,221)(154,222), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,47,39,100)(2,124,40,169)(3,45,41,112)(4,122,42,181)(5,43,29,110)(6,120,30,179)(7,55,31,108)(8,118,32,177)(9,53,33,106)(10,116,34,175)(11,51,35,104)(12,114,36,173)(13,49,37,102)(14,126,38,171)(15,130,211,65)(16,85,212,158)(17,128,213,63)(18,97,214,156)(19,140,215,61)(20,95,216,168)(21,138,217,59)(22,93,218,166)(23,136,219,57)(24,91,220,164)(25,134,221,69)(26,89,222,162)(27,132,223,67)(28,87,224,160)(44,195,111,80)(46,193,99,78)(48,191,101,76)(50,189,103,74)(52,187,105,72)(54,185,107,84)(56,183,109,82)(58,150,137,208)(60,148,139,206)(62,146,127,204)(64,144,129,202)(66,142,131,200)(68,154,133,198)(70,152,135,210)(71,117,186,176)(73,115,188,174)(75,113,190,172)(77,125,192,170)(79,123,194,182)(81,121,196,180)(83,119,184,178)(86,201,159,143)(88,199,161,141)(90,197,163,153)(92,209,165,151)(94,207,167,149)(96,205,155,147)(98,203,157,145)>;

G:=Group( (1,153)(2,154)(3,141)(4,142)(5,143)(6,144)(7,145)(8,146)(9,147)(10,148)(11,149)(12,150)(13,151)(14,152)(15,81)(16,82)(17,83)(18,84)(19,71)(20,72)(21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,79)(28,80)(29,201)(30,202)(31,203)(32,204)(33,205)(34,206)(35,207)(36,208)(37,209)(38,210)(39,197)(40,198)(41,199)(42,200)(43,86)(44,87)(45,88)(46,89)(47,90)(48,91)(49,92)(50,93)(51,94)(52,95)(53,96)(54,97)(55,98)(56,85)(57,172)(58,173)(59,174)(60,175)(61,176)(62,177)(63,178)(64,179)(65,180)(66,181)(67,182)(68,169)(69,170)(70,171)(99,162)(100,163)(101,164)(102,165)(103,166)(104,167)(105,168)(106,155)(107,156)(108,157)(109,158)(110,159)(111,160)(112,161)(113,136)(114,137)(115,138)(116,139)(117,140)(118,127)(119,128)(120,129)(121,130)(122,131)(123,132)(124,133)(125,134)(126,135)(183,212)(184,213)(185,214)(186,215)(187,216)(188,217)(189,218)(190,219)(191,220)(192,221)(193,222)(194,223)(195,224)(196,211), (1,25)(2,198)(3,27)(4,200)(5,15)(6,202)(7,17)(8,204)(9,19)(10,206)(11,21)(12,208)(13,23)(14,210)(16,183)(18,185)(20,187)(22,189)(24,191)(26,193)(28,195)(29,211)(30,144)(31,213)(32,146)(33,215)(34,148)(35,217)(36,150)(37,219)(38,152)(39,221)(40,154)(41,223)(42,142)(43,159)(44,131)(45,161)(46,133)(47,163)(48,135)(49,165)(50,137)(51,167)(52,139)(53,155)(54,127)(55,157)(56,129)(57,113)(58,103)(59,115)(60,105)(61,117)(62,107)(63,119)(64,109)(65,121)(66,111)(67,123)(68,99)(69,125)(70,101)(71,147)(72,216)(73,149)(74,218)(75,151)(76,220)(77,153)(78,222)(79,141)(80,224)(81,143)(82,212)(83,145)(84,214)(85,120)(86,110)(87,122)(88,112)(89,124)(90,100)(91,126)(92,102)(93,114)(94,104)(95,116)(96,106)(97,118)(98,108)(128,178)(130,180)(132,182)(134,170)(136,172)(138,174)(140,176)(156,177)(158,179)(160,181)(162,169)(164,171)(166,173)(168,175)(184,203)(186,205)(188,207)(190,209)(192,197)(194,199)(196,201), (1,77)(2,78)(3,79)(4,80)(5,81)(6,82)(7,83)(8,84)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,143)(16,144)(17,145)(18,146)(19,147)(20,148)(21,149)(22,150)(23,151)(24,152)(25,153)(26,154)(27,141)(28,142)(29,196)(30,183)(31,184)(32,185)(33,186)(34,187)(35,188)(36,189)(37,190)(38,191)(39,192)(40,193)(41,194)(42,195)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,113)(50,114)(51,115)(52,116)(53,117)(54,118)(55,119)(56,120)(57,165)(58,166)(59,167)(60,168)(61,155)(62,156)(63,157)(64,158)(65,159)(66,160)(67,161)(68,162)(69,163)(70,164)(85,129)(86,130)(87,131)(88,132)(89,133)(90,134)(91,135)(92,136)(93,137)(94,138)(95,139)(96,140)(97,127)(98,128)(99,169)(100,170)(101,171)(102,172)(103,173)(104,174)(105,175)(106,176)(107,177)(108,178)(109,179)(110,180)(111,181)(112,182)(197,221)(198,222)(199,223)(200,224)(201,211)(202,212)(203,213)(204,214)(205,215)(206,216)(207,217)(208,218)(209,219)(210,220), (1,192)(2,193)(3,194)(4,195)(5,196)(6,183)(7,184)(8,185)(9,186)(10,187)(11,188)(12,189)(13,190)(14,191)(15,201)(16,202)(17,203)(18,204)(19,205)(20,206)(21,207)(22,208)(23,209)(24,210)(25,197)(26,198)(27,199)(28,200)(29,81)(30,82)(31,83)(32,84)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(41,79)(42,80)(43,180)(44,181)(45,182)(46,169)(47,170)(48,171)(49,172)(50,173)(51,174)(52,175)(53,176)(54,177)(55,178)(56,179)(57,92)(58,93)(59,94)(60,95)(61,96)(62,97)(63,98)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(99,124)(100,125)(101,126)(102,113)(103,114)(104,115)(105,116)(106,117)(107,118)(108,119)(109,120)(110,121)(111,122)(112,123)(127,156)(128,157)(129,158)(130,159)(131,160)(132,161)(133,162)(134,163)(135,164)(136,165)(137,166)(138,167)(139,168)(140,155)(141,223)(142,224)(143,211)(144,212)(145,213)(146,214)(147,215)(148,216)(149,217)(150,218)(151,219)(152,220)(153,221)(154,222), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,47,39,100)(2,124,40,169)(3,45,41,112)(4,122,42,181)(5,43,29,110)(6,120,30,179)(7,55,31,108)(8,118,32,177)(9,53,33,106)(10,116,34,175)(11,51,35,104)(12,114,36,173)(13,49,37,102)(14,126,38,171)(15,130,211,65)(16,85,212,158)(17,128,213,63)(18,97,214,156)(19,140,215,61)(20,95,216,168)(21,138,217,59)(22,93,218,166)(23,136,219,57)(24,91,220,164)(25,134,221,69)(26,89,222,162)(27,132,223,67)(28,87,224,160)(44,195,111,80)(46,193,99,78)(48,191,101,76)(50,189,103,74)(52,187,105,72)(54,185,107,84)(56,183,109,82)(58,150,137,208)(60,148,139,206)(62,146,127,204)(64,144,129,202)(66,142,131,200)(68,154,133,198)(70,152,135,210)(71,117,186,176)(73,115,188,174)(75,113,190,172)(77,125,192,170)(79,123,194,182)(81,121,196,180)(83,119,184,178)(86,201,159,143)(88,199,161,141)(90,197,163,153)(92,209,165,151)(94,207,167,149)(96,205,155,147)(98,203,157,145) );

G=PermutationGroup([[(1,153),(2,154),(3,141),(4,142),(5,143),(6,144),(7,145),(8,146),(9,147),(10,148),(11,149),(12,150),(13,151),(14,152),(15,81),(16,82),(17,83),(18,84),(19,71),(20,72),(21,73),(22,74),(23,75),(24,76),(25,77),(26,78),(27,79),(28,80),(29,201),(30,202),(31,203),(32,204),(33,205),(34,206),(35,207),(36,208),(37,209),(38,210),(39,197),(40,198),(41,199),(42,200),(43,86),(44,87),(45,88),(46,89),(47,90),(48,91),(49,92),(50,93),(51,94),(52,95),(53,96),(54,97),(55,98),(56,85),(57,172),(58,173),(59,174),(60,175),(61,176),(62,177),(63,178),(64,179),(65,180),(66,181),(67,182),(68,169),(69,170),(70,171),(99,162),(100,163),(101,164),(102,165),(103,166),(104,167),(105,168),(106,155),(107,156),(108,157),(109,158),(110,159),(111,160),(112,161),(113,136),(114,137),(115,138),(116,139),(117,140),(118,127),(119,128),(120,129),(121,130),(122,131),(123,132),(124,133),(125,134),(126,135),(183,212),(184,213),(185,214),(186,215),(187,216),(188,217),(189,218),(190,219),(191,220),(192,221),(193,222),(194,223),(195,224),(196,211)], [(1,25),(2,198),(3,27),(4,200),(5,15),(6,202),(7,17),(8,204),(9,19),(10,206),(11,21),(12,208),(13,23),(14,210),(16,183),(18,185),(20,187),(22,189),(24,191),(26,193),(28,195),(29,211),(30,144),(31,213),(32,146),(33,215),(34,148),(35,217),(36,150),(37,219),(38,152),(39,221),(40,154),(41,223),(42,142),(43,159),(44,131),(45,161),(46,133),(47,163),(48,135),(49,165),(50,137),(51,167),(52,139),(53,155),(54,127),(55,157),(56,129),(57,113),(58,103),(59,115),(60,105),(61,117),(62,107),(63,119),(64,109),(65,121),(66,111),(67,123),(68,99),(69,125),(70,101),(71,147),(72,216),(73,149),(74,218),(75,151),(76,220),(77,153),(78,222),(79,141),(80,224),(81,143),(82,212),(83,145),(84,214),(85,120),(86,110),(87,122),(88,112),(89,124),(90,100),(91,126),(92,102),(93,114),(94,104),(95,116),(96,106),(97,118),(98,108),(128,178),(130,180),(132,182),(134,170),(136,172),(138,174),(140,176),(156,177),(158,179),(160,181),(162,169),(164,171),(166,173),(168,175),(184,203),(186,205),(188,207),(190,209),(192,197),(194,199),(196,201)], [(1,77),(2,78),(3,79),(4,80),(5,81),(6,82),(7,83),(8,84),(9,71),(10,72),(11,73),(12,74),(13,75),(14,76),(15,143),(16,144),(17,145),(18,146),(19,147),(20,148),(21,149),(22,150),(23,151),(24,152),(25,153),(26,154),(27,141),(28,142),(29,196),(30,183),(31,184),(32,185),(33,186),(34,187),(35,188),(36,189),(37,190),(38,191),(39,192),(40,193),(41,194),(42,195),(43,121),(44,122),(45,123),(46,124),(47,125),(48,126),(49,113),(50,114),(51,115),(52,116),(53,117),(54,118),(55,119),(56,120),(57,165),(58,166),(59,167),(60,168),(61,155),(62,156),(63,157),(64,158),(65,159),(66,160),(67,161),(68,162),(69,163),(70,164),(85,129),(86,130),(87,131),(88,132),(89,133),(90,134),(91,135),(92,136),(93,137),(94,138),(95,139),(96,140),(97,127),(98,128),(99,169),(100,170),(101,171),(102,172),(103,173),(104,174),(105,175),(106,176),(107,177),(108,178),(109,179),(110,180),(111,181),(112,182),(197,221),(198,222),(199,223),(200,224),(201,211),(202,212),(203,213),(204,214),(205,215),(206,216),(207,217),(208,218),(209,219),(210,220)], [(1,192),(2,193),(3,194),(4,195),(5,196),(6,183),(7,184),(8,185),(9,186),(10,187),(11,188),(12,189),(13,190),(14,191),(15,201),(16,202),(17,203),(18,204),(19,205),(20,206),(21,207),(22,208),(23,209),(24,210),(25,197),(26,198),(27,199),(28,200),(29,81),(30,82),(31,83),(32,84),(33,71),(34,72),(35,73),(36,74),(37,75),(38,76),(39,77),(40,78),(41,79),(42,80),(43,180),(44,181),(45,182),(46,169),(47,170),(48,171),(49,172),(50,173),(51,174),(52,175),(53,176),(54,177),(55,178),(56,179),(57,92),(58,93),(59,94),(60,95),(61,96),(62,97),(63,98),(64,85),(65,86),(66,87),(67,88),(68,89),(69,90),(70,91),(99,124),(100,125),(101,126),(102,113),(103,114),(104,115),(105,116),(106,117),(107,118),(108,119),(109,120),(110,121),(111,122),(112,123),(127,156),(128,157),(129,158),(130,159),(131,160),(132,161),(133,162),(134,163),(135,164),(136,165),(137,166),(138,167),(139,168),(140,155),(141,223),(142,224),(143,211),(144,212),(145,213),(146,214),(147,215),(148,216),(149,217),(150,218),(151,219),(152,220),(153,221),(154,222)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,47,39,100),(2,124,40,169),(3,45,41,112),(4,122,42,181),(5,43,29,110),(6,120,30,179),(7,55,31,108),(8,118,32,177),(9,53,33,106),(10,116,34,175),(11,51,35,104),(12,114,36,173),(13,49,37,102),(14,126,38,171),(15,130,211,65),(16,85,212,158),(17,128,213,63),(18,97,214,156),(19,140,215,61),(20,95,216,168),(21,138,217,59),(22,93,218,166),(23,136,219,57),(24,91,220,164),(25,134,221,69),(26,89,222,162),(27,132,223,67),(28,87,224,160),(44,195,111,80),(46,193,99,78),(48,191,101,76),(50,189,103,74),(52,187,105,72),(54,185,107,84),(56,183,109,82),(58,150,137,208),(60,148,139,206),(62,146,127,204),(64,144,129,202),(66,142,131,200),(68,154,133,198),(70,152,135,210),(71,117,186,176),(73,115,188,174),(75,113,190,172),(77,125,192,170),(79,123,194,182),(81,121,196,180),(83,119,184,178),(86,201,159,143),(88,199,161,141),(90,197,163,153),(92,209,165,151),(94,207,167,149),(96,205,155,147),(98,203,157,145)]])

88 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C···4J4K4L4M4N7A7B7C14A···14U14V···14AS28A···28L
order12···2222222444···4444477714···1414···1428···28
size11···12222444414···14282828282222···24···44···4

88 irreducible representations

dim11111122222224
type+++++++++++-
imageC1C2C2C2C2C2D4D7C4○D4D14D14D14C7⋊D4D42D7
kernelC2×C23.18D14C2×Dic7⋊C4C23.18D14C2×C23.D7C23×Dic7D4×C2×C14C22×C14C22×D4C2×C14C22×C4C2×D4C24C23C22
# reps12831143831262412

Matrix representation of C2×C23.18D14 in GL6(𝔽29)

2800000
0280000
0028000
0002800
000010
000001
,
100000
010000
0028000
0002800
0000280
000001
,
2800000
0280000
001000
000100
0000280
0000028
,
100000
010000
001000
000100
0000280
0000028
,
0280000
2800000
00222500
0022000
0000028
0000280
,
1590000
20140000
0028100
000100
0000017
0000120

G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[0,28,0,0,0,0,28,0,0,0,0,0,0,0,22,22,0,0,0,0,25,0,0,0,0,0,0,0,0,28,0,0,0,0,28,0],[15,20,0,0,0,0,9,14,0,0,0,0,0,0,28,0,0,0,0,0,1,1,0,0,0,0,0,0,0,12,0,0,0,0,17,0] >;

C2×C23.18D14 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{18}D_{14}
% in TeX

G:=Group("C2xC2^3.18D14");
// GroupNames label

G:=SmallGroup(448,1249);
// by ID

G=gap.SmallGroup(448,1249);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,675,297,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^14=1,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=f*b*f^-1=b*d=d*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^-1>;
// generators/relations

׿
×
𝔽